Affiliation:
1. Laboratory of Information Functional Materials and Devices, School of Science, and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract
In this study, the solar-blind ultraviolet photodetectors based on p-Si/Ga2O3 and p-Si/SiO2/n-Ga2O3 heterojunctions were fabricated by metalorganic chemical vapor deposition, respectively. Benefitting from the electron-blocking ability of SiO2 dielectric layer insertion, p-Si/SiO2/n-Ga2O3 photodetectors exhibit a very low dark current of 1.14 × 10−12 A, which is 4 orders of magnitude lower than p-Si/Ga2O3 photodetectors (3.22 × 10−8 A). At the same time, a high photo-to-dark current ratio (1.81 × 105) of p-Si/SiO2/n-Ga2O3 photodetectors was obtained under UV light (λ = 254 nm) at −15 V. Meanwhile, the p-Si/SiO2/n-Ga2O3 devices express better photodetection performance, in which the responsivity and EQE are about two times more than that of p-Si/Ga2O3 photodetectors. Furthermore, the photodetector was found to possess impressive photodetection stabilities. Our results indicate that the p-Si/SiO2/n-Ga2O3 photodetector is an excellent candidate for high-sensitivity, ultrafast response solar-blind UV light detection.
Funder
Fundamental Research Funds for the Central Universities
Fund of State Key Laboratory of Information Photonics And Optical Communications
Subject
Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献