Improve photo-to-dark current ratio of p-Si/SiO2/n-Ga2O3 heterojunction solar-blind photodetector by inserting SiO2 barrier layer

Author:

Yan Xu1ORCID,Ji Xueqiang1ORCID,Wang Jinjin1,Lu Chao1,Yan Zuyong1,Hu Shengrun1,Zhang Sai1,Li Peigang1

Affiliation:

1. Laboratory of Information Functional Materials and Devices, School of Science, and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

In this study, the solar-blind ultraviolet photodetectors based on p-Si/Ga2O3 and p-Si/SiO2/n-Ga2O3 heterojunctions were fabricated by metalorganic chemical vapor deposition, respectively. Benefitting from the electron-blocking ability of SiO2 dielectric layer insertion, p-Si/SiO2/n-Ga2O3 photodetectors exhibit a very low dark current of 1.14 × 10−12 A, which is 4 orders of magnitude lower than p-Si/Ga2O3 photodetectors (3.22 × 10−8 A). At the same time, a high photo-to-dark current ratio (1.81 × 105) of p-Si/SiO2/n-Ga2O3 photodetectors was obtained under UV light (λ = 254 nm) at −15 V. Meanwhile, the p-Si/SiO2/n-Ga2O3 devices express better photodetection performance, in which the responsivity and EQE are about two times more than that of p-Si/Ga2O3 photodetectors. Furthermore, the photodetector was found to possess impressive photodetection stabilities. Our results indicate that the p-Si/SiO2/n-Ga2O3 photodetector is an excellent candidate for high-sensitivity, ultrafast response solar-blind UV light detection.

Funder

Fundamental Research Funds for the Central Universities

Fund of State Key Laboratory of Information Photonics And Optical Communications

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3