FF-RRT*: a sampling-improved path planning algorithm for mobile robots against concave cavity obstacle

Author:

Cong Jiping,Hu Jianbo,Wang YingyangORCID,He Zihou,Han Linxiao,Su Maoyu

Abstract

AbstractThe slow convergence rate and large cost of the initial solution limit the performance of rapidly exploring random tree star (RRT*). To address this issue, this paper proposes a modified RRT* algorithm (defined as FF-RRT*) that creates an optimal initial solution with a fast convergence rate. An improved hybrid sampling method is proposed to speed up the convergence rate by decreasing the iterations and overcoming the application limitation of the original hybrid sampling method towards concave cavity obstacle. The improved hybrid sampling method combines the goal bias sampling strategy and random sampling strategy, which requires a few searching time, resulting in a faster convergence rate than the existing method. Then, a parent node is created for the sampling node to optimize the path. Finally, the performance of FF-RRT* is validated in four simulation environments and compared with the other algorithms. The FF-RRT* shortens 32% of the convergence time in complex maze environment and 25% of the convergence time in simple maze environment compared to F-RRT*. And in a complex maze with a concave cavity obstacle, the average convergence time of Fast-RRT* in this environment is 134% more than the complex maze environment compared to 12% with F-RRT* and 34% with FF-RRT*. The simulation results show that FF-RRT* possesses superior performance compared to the other algorithms, and also fits with a much more complex environment.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Natural Science Basic Research Program of Shaanxi Province

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3