Research on Autonomous Vehicle Path Planning Algorithm Based on Improved RRT* Algorithm and Artificial Potential Field Method

Author:

Li Xiang1ORCID,Li Gang1ORCID,Bian Zijian1

Affiliation:

1. School of Automobile and Traffic Engineering, Liaoning University of Technology, Jinzhou 121001, China

Abstract

For the RRT* algorithm, there are problems such as greater randomness, longer time consumption, more redundant nodes, and inability to perform local obstacle avoidance when encountering unknown obstacles in the path planning process of autonomous vehicles. And the artificial potential field method (APF) applied to autonomous vehicles is prone to problems such as local optimality, unreachable targets, and inapplicability to global scenarios. A fusion algorithm combining the improved RRT* algorithm and the improved artificial potential field method is proposed. First of all, for the RRT* algorithm, the concept of the artificial potential field and probability sampling optimization strategy are introduced, and the adaptive step size is designed according to the road curvature. The path post-processing of the planned global path is carried out to reduce the redundant nodes of the generated path, enhance the purpose of sampling, solve the problem where oscillation may occur when expanding near the target point, reduce the randomness of RRT* node sampling, and improve the efficiency of path generation. Secondly, for the artificial potential field method, by designing obstacle avoidance constraints, adding a road boundary repulsion potential field, and optimizing the repulsion function and safety ellipse, the problem of unreachable targets can be solved, unnecessary steering in the path can be reduced, and the safety of the planned path can be improved. In the face of U-shaped obstacles, virtual gravity points are generated to solve the local minimum problem and improve the passing performance of the obstacles. Finally, the fusion algorithm, which combines the improved RRT* algorithm and the improved artificial potential field method, is designed. The former first plans the global path, extracts the path node as the temporary target point of the latter, guides the vehicle to drive, and avoids local obstacles through the improved artificial potential field method when encountered with unknown obstacles, and then smooths the path planned by the fusion algorithm, making the path satisfy the vehicle kinematic constraints. The simulation results in the different road scenes show that the method proposed in this paper can quickly plan a smooth path that is more stable, more accurate, and suitable for vehicle driving.

Funder

key research projects of China Liaoning Provincial Department of Education

China Liaoning Provincial Natural Fund Grant Program Project

Key Projects of China National Natural Science Foundation Joint Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3