Creating a robot localization monitor using particle filter and machine learning approaches

Author:

Eder Matthias,Reip Michael,Steinbauer Gerald

Abstract

AbstractRobot localization is a fundamental capability of all mobile robots. Because of uncertainties in acting and sensing, and environmental factors such as people flocking around robots, there is always the risk that a robot loses its localization. Very often behaviors of robots rely on a reliable position estimation. Thus, for dependability of robot systems it is of great interest for the system to know the state of its localization component. In this paper we present an approach that allows a robot to asses if the localization is still correct. The approach assumes that the underlying localization approach is based on a particle filter. We use deep learning to identify temporal patterns in the particles in the case of losing/lost localization. These patterns are then combined with weak classifiers from the particle set and sensor perception for boosted learning of a localization estimator. Through the extraction of features generated by neural networks and its usage for training strong classifiers, the robots localization accuracy can be estimated. The approach is evaluated in a simulated transport robot environment where a degraded localization is provoked by disturbances cased by dynamic obstacles. Results show that it is possible to monitor the robots localization accuracy using convolutional as well as recurrent neural networks. The additional boosting using Adaboost also yields an increase in training accuracy. Thus, this paper directly contributes to the verification of localization performance.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3