Electrolyte Effect on Photoetching of Gallium Nitride

Author:

Liang Huiqiang,Wei Zhenghao,Fang Jiongchong,Li Yanming,Li Changli,Xie Zhirun,Ng Yun Hau,Zeng GuosongORCID

Abstract

AbstractThe limited material removal rate of conventional chemical mechanical polishing (CMP) significantly hinders the fabrication efficiency and surface quality, thereby preventing the development of gallium nitride (GaN)-based devices. Moreover, the incorporation of photoelectrochemistry in CMP has garnered increasing attention because of its potential to enhance the quality and efficiency of the GaN process. However, a considerable gap still exists in the comprehensive understanding of the specific photoelectrochemical (PEC) behavior of GaN. Here, we report the influence of the electrolyte on the PEC etching of GaN. Various acids and bases were tested, with their pH being carefully adjusted. The concentrations of the cations and anions were also examined. The results showed that photocorrosion/photoetching was more pronounced in sulfuric acid, phosphoric acid, and nitric acid environments than in alkaline environments, but it was less pronounced in hydrochloric acid. Furthermore, the effects of pH and anion concentration on photoetching were investigated, and the results revealed that photoetching in acidic environments weakened with increasing pH levels and diminished with increasing sulfate concentration. The underlying reasons contributing to this observation were explored. These findings provide ideas for improving the photoetching efficiency of GaN, thereby enriching the photoelectrochemical mechanical polishing (PECMP) technology of GaN.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3