Author:
Straube Guido,Fischer Calderón Juan Sebastian,Ortlepp Ingo,Füßl Roland,Manske Eberhard
Abstract
AbstractAs standard concepts for precision positioning within a machine reach their limits with increasing measurement volumes, inverse concepts are a promising approach for addressing this problem. The inverse principle entails other limitations, as for high-precision positioning of a sensor head within a large measurement volume, three four-beam interferometers are required in order to measure all necessary translations and rotations of the sensor head and reconstruct the topography of the reference system consisting of fixed mirrors in the x-, y-, and z-directions. We present the principle of a passive heterodyne laser interferometer with consequently separated beam paths for the individual heterodyne frequencies. The beam path design is illustrated and described, as well as the design of the signal-processing and evaluation algorithm, which is implemented using a System-On-a-Chip with an integrated FPGA, CPU, and A/D converters. A streamlined bench-top optical assembly was set up and measurements were carried out to investigate the remaining non-linearities. Additionally, reference measurements with a commercial homodyne interferometer were executed.
Funder
Deutsche Forschungsgemeinschaft
Technische Universität Ilmenau
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Materials Science (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献