The influence of AAR coupler features on estimation of in-train forces

Author:

Yadav Om PrakashORCID,Vyas Nalinaksh S.ORCID

Abstract

AbstractInadequate management of large in-train forces transferred through coupler systems of a railway train leads to running and structural failures of vehicles. Understanding these phenomena and their mitigation requires accurate estimation of relative motions and in-train forces between vehicle bodies. Previous numerical studies have ignored inertia of coupling elements and the impacts between couplers. Thus, existing models underestimate the additional dynamic variations in in-train forces. Detailed multi-body dynamic models of two AAR (Association of American Railroads) coupler systems used in passenger and freight trains are developed, incorporating coupler inertia and various slacks. Due to the modeling and simulation complexities involved in a full train model, with such details of coupler system, actual longitudinal train dynamics is not studied. A system comprising only two coupling units, inter-connecting two consecutive vehicles, is modeled. Considered system has been fixed at one end and an excitation force is applied at the other end, to mimic a relative force transmission through combined coupler system. Simulation results obtained from this representative system show that, noticeable influence in in-train forces are expected due to the combined effect of inertia of couplers and intermittent impacts between couplers in the slack regime. Maximum amplitude of longitudinal reaction force, transferred from draft gear housing to vehicle body, is expected to be significantly higher than that predicted using existing models of coupler system. It is also observed that the couplers and knuckles are subjected to significant longitudinal and lateral contact forces, due to the intermittent impacts between couplers. Thus, accurate estimation of draft gear reaction force and impact forces between couplers are essential to design vehicle and coupler components, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanical Engineering,Transportation,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3