Riding Comfort Evaluation Based on Longitudinal Acceleration for Urban Rail Transit—Mathematical Models and Experiments in Beijing Subway

Author:

Ma Huiru,Chen Dewang,Yin Jiateng

Abstract

Riding comfort is an important index to measure the quality of service for railways, especially for congested urban rail transit systems where the majority of passengers cannot find a seat. Existing studies usually employ the value of longitudinal acceleration as the key indicator to evaluate the riding comfort of vehicles, while there is no validated mathematical models to evaluate the riding comfort of urban rail trains from the perspective of passengers. This paper aims to employ the collected longitudinal acceleration data and passengers’ feedback data in Beijing subway to qualitatively measure and validate the riding comfort of transit trains. First, we develop four regular fuzzy sets based comfort measurement models, where the parameters of the fuzzy sets are determined by experiences of domain experts and the field data. Then a combinational model is given by averaging the four regular fuzzy set models to elaborate a comprehensive measurement for the riding comfort. In order to verify the developed models, we conducted a questionnaire survey in Beijing subway. The surveyed riding comfort data from passengers and the measured acceleration data are used to validate and optimize the proposed models. Two key parameters are deduced to describe all parameters in the fuzzy set models and a meta-heuristic algorithm is applied to optimize the parameters and weight coefficients of the combinational model. Comparing the collected comfort data with the comfort levels and values calculated by different models shows that the averaging model is better than any regular fuzzy set model. Furthermore, the optimized model is better than the averaging model and provides the best accuracy and robustness for riding comfort measurement. The models provided in this paper offer an optional way to measure the riding comfort for further assessment and more comprehensively tuning of train control systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3