Aliasing Effect on Flux Ramp Demodulation: Nonlinearity in the Microwave Squid Multiplexer
-
Published:2023-08-11
Issue:3-4
Volume:213
Page:223-236
-
ISSN:0022-2291
-
Container-title:Journal of Low Temperature Physics
-
language:en
-
Short-container-title:J Low Temp Phys
Author:
Salum J. M.,Muscheid T.,Fuster A.,Garcia Redondo M. E.,Hampel M. R.,Ferreyro L. P.,Geria J. M.,Bonilla-Neira J.,Müller N.,Bonaparte J.,Almela A.,Ardila-Perez L. E.,Platino M.,Sander O.,Weber M.
Abstract
AbstractA novel system formed by a Microwave Superconducting Quantum Interference Device (SQUID) Multiplexer ($$\mu$$
μ
MUX) and a room temperature electronics employs frequency division multiplexing (FDM) technique to read out multiple cryogenic detectors. Since the detector signal is embedded in the phase of the SQUID signal, a Digital Quadrature Demodulator (DQD) is widely implemented to recover it. However, the DQD also generates a signal that aliases into the first Nyquist zone affecting the demodulated detector signal. In this work, we demonstrate how this spurious signal is generated and a mathematical model of it is derived and validated. In addition, we discuss different proposals to improve the attenuation of this undesired signal. Lastly, we implement one of the proposals in our readout system. Our measurements show an enhancement in the spurious signal attenuation of more than 35 dB. As a result, this work contributes to attenuate the spurious below the system noise.
Funder
Karlsruher Institut für Technologie (KIT)
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Reference25 articles.
1. O. Sander, N. Karcher, O. Krömer, S. Kempf, M. Wegner, C. Enss, M. Weber, Software-defined radio readout system for the ECHo experiment. IEEE Trans. Nucl. Sci. 66(7), 1204–1209 (2019). https://doi.org/10.1109/TNS.2019.2914665 2. H. McCarrick, E. Healy, Z. Ahmed, K. Arnold, Z. Atkins, J.E. Austermann, T. Bhandarkar, J.A. Beall, S.M. Bruno, S.K. Choi, J. Connors, N.F. Cothard, K.D. Crowley, S. Dicker, B. Dober, C.J. Duell, S.M. Duff, D. Dutcher, J.C. Frisch, N. Galitzki, M.B. Gralla, J.E. Gudmundsson, S.W. Henderson, G.C. Hilton, S.-P.P. Ho, Z.B. Huber, J. Hubmayr, J. Iuliano, B.R. Johnson, A.M. Kofman, A. Kusaka, J. Lashner, A.T. Lee, Y. Li, M.J. Link, T.J. Lucas, M. Lungu, J.A.B. Mates, J.J. McMahon, M.D. Niemack, J. Orlowski-Scherer, J. Seibert, M. Silva-Feaver, S.M. Simon, S. Staggs, A. Suzuki, T. Terasaki, R. Thornton, J.N. Ullom, E.M. Vavagiakis, L.R. Vale, J.V. Lanen, M.R. Vissers, Y. Wang, E.J. Wollack, Z. Xu, E. Young, C. Yu, K. Zheng, N. Zhu, The simons observatory microwave SQUID multiplexing detector module design. Astrophys. J. 922(1), 38 (2021). https://doi.org/10.3847/1538-4357/ac2232 3. S.M. Stanchfield, P.A.R. Ade, J. Aguirre, J.A. Brevik, H.M. Cho, R. Datta, M.J. Devlin, S.R. Dicker, B. Dober, D. Egan, P. Ford, G. Hilton, J. Hubmayr, K.D. Irwin, P. Marganian, B.S. Mason, J.A.B. Mates, J. McMahon, M. Mello, T. Mroczkowski, C. Romero, C. Tucker, L. Vale, S. White, M. Whitehead, A.H. Young, Development of a microwave SQUID-multiplexed TES array for MUSTANG-2. J. Low Temp. Phys. 184(1–2), 460–465 (2016). https://doi.org/10.1007/s10909-016-1570-4 4. D.A. Bennett, J.A.B. Mates, S.R. Bandler, D.T. Becker, J.W. Fowler, J.D. Gard, G.C. Hilton, K.D. Irwin, K.M. Morgan, C.D. Reintsema, K. Sakai, D.R. Schmidt, S.J. Smith, D.S. Swetz, J.N. Ullom, L.R. Vale, A.L. Wessels, Microwave SQUID multiplexing for the lynx X-ray microcalorimeter. J. Astron. Telesc. Instrum. Syst. 5(02), 1 (2019). https://doi.org/10.1117/1.jatis.5.2.021007 5. K.D. Irwin, G.C. Hilton, Transition-edge sensors, in Topics in Applied Physics, (Springer, Berlin, Heidelberg, 2005), pp. 63–150. https://doi.org/10.1007/10933596_3
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|