RFSoC Gen3-Based Software-Defined Radio Characterization for the Readout System of Low-Temperature Bolometers
-
Published:2024-04-12
Issue:3-4
Volume:215
Page:161-169
-
ISSN:0022-2291
-
Container-title:Journal of Low Temperature Physics
-
language:en
-
Short-container-title:J Low Temp Phys
Author:
Redondo M. E. García,Muscheid T.,Gartmann R.,Salum J. M.,Ferreyro L. P.,Müller N. A.,Bonilla-Neira J. D.,Geria J. M.,Bonaparte J. J.,Almela A.,Ardila-Perez L. E.,Hampel M. R.,Fuster A. E.,Platino M.,Sander O.,Weber M.,Etchegoyen A.
Abstract
AbstractThis work reports the performance evaluation of an SDR readout system based on the latest generation (Gen3) of AMD’s Radio-Frequency System-on-Chip (RFSoC) processing platform, which integrates a full-stack processing system and a powerful FPGA with up to 32 high-speed and high-resolution 14-bit Digital-to-Analog Converters and 14-bit Analog-to-Digital Converters. The proposed readout system uses a previously developed multi-band, double-conversion IQ RF-mixing board targeting a multiplexing factor of approximately 1000 bolometers in a bandwidth between 4 and 8 GHz, in line with state-of-the-art microwave SQUID multiplexers. The characterization of the system was performed in two stages, under the conditions typically imposed by the multiplexer and the cold readout circuit: first, in transmission, showing that noise and spurious levels of the generated tones are close to the values imposed by the cold readout, and second, in RF loopback, presenting noise values better than −100 dBc/Hz totally in agreement with the state-of-the-art readout systems. It was demonstrated that the RFSoC Gen3 device is a suitable enabling technology for the next generation of superconducting detector readout systems, reducing system complexity, increasing system integration, and achieving these goals without performance degradation.
Funder
Karlsruher Institut für Technologie (KIT)
Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. M.H. Abitbol, Z. Ahmed, D. Barron, R. B. Thakur, A. N. Bender, B. A. Benson, C. A. Bischoff, S. A. Bryan, J. E. Carlstrom, C. L. Chang, D. T. Chuss, K. T. Crowley, A. Cukierman, T. Haan, M. Dobbs, T. Essinger-Hileman, J. P. Filippini, K. Ganga, J. E. Gudmundsson, N. W. Halverson, S. Hanany, S. W. Henderson, C. A. Hill, S.-P.P. Ho, J. Hubmayr, K. Irwin, O. Jeong, B. R. Johnson, S. A. Kernasovskiy, J. M. Kovac, A. Kusaka, A. T. Lee, S. Maria, P. Mauskopf, J. J. McMahon, L. Moncelsi, A. W. Nadolski, J. M. Nagy, M. D. Niemack, R. C. O’Brient, S. Padin, S. C. Parshley, C. Pryke, N. A. Roe, K. Rostem, J. Ruhl, S. M. Simon, S. T. Staggs, A. Suzuki, E. R. Switzer, O. Tajima, K. L. Thompson, P. Timbie, G. S. Tucker, J. D. Vieira, A. G. Vieregg, B. Westbrook, E. J. Wollack, K. W. Yoon, K. S. Young, E. Y. Young, CMB-S4 Technology Book, First Edition. arXiv e-prints, 1706–02464 (2017) https://doi.org/10.48550/arXiv.1706.02464arXiv:1706.02464 [astro-ph.IM] 2. J. Hubmayr, J.E. Austermann, J.A. Beall, D.T. Becker, B. Dober, S.M. Duff, J. Gao, G.C. Hilton, C.M. McKenney, J.N. Ullom, J.V. Lanen, M.R. Vissers, Low-temperature detectors for CMB imaging arrays. J. Low Temp. Phys. 193(3–4), 633–647 (2018). https://doi.org/10.1007/s10909-018-2029-6 3. J.M. Geria, M.R. Hampel, S. Kempf, J.J.F. Bonaparte, L.P. Ferreyro, M.E.G. Redondo, D.A. Almela, J.M.S. Salum, N.A. Müller, J.D.B. Neira, A.E. Fuster, M. Platino, A. Etchegoyen, Suitability of magnetic microbolometers based on paramagnetic temperature sensors for cmb polarization measurements. J. Astron. Telesco. Instrum. Syst. 9(1): 016002 (2023). https://doi.org/10.1117/1.JATIS.9.1.016002. 54.12.01; LK 01 4. B. Dober, Z. Ahmed, K. Arnold, D.T. Becker, D.A. Bennett, J.A. Connors, A. Cukierman, J.M. D’Ewart, S.M. Duff, J.E. Dusatko, J.C. Frisch, J.D. Gard, S.W. Henderson, R. Herbst, G.C. Hilton, J. Hubmayr, Y. Li, J.A.B. Mates, H. McCarrick, C.D. Reintsema, M. Silva-Feaver, L. Ruckman, J.N. Ullom, L.R. Vale, D.D.V. Winkle, J. Vasquez, Y. Wang, E. Young, C. Yu, K. Zheng, A microwave squid multiplexer optimized for bolometric applications. Appl. Phys. Lett. 118 (2021). https://doi.org/10.1063/5.0033416 5. ...M.S. Rao, M. Silva-Feaver, A. Ali, K. Arnold, P. Ashton, B.J. Dober, C.J. Duell, S.M. Duff, N. Galitzki, E. Healy, S. Henderson, S.-P.P. Ho, J. Hoh, A.M. Kofman, A. Kusaka, A.T. Lee, A. Mangu, J. Mathewson, P. Mauskopf, H. McCarrick, J. Moore, M.D. Niemack, C. Raum, M. Salatino, T. Sasse, J. Seibert, S.M. Simon, S. Staggs, J.R. Stevens, G. Teply, R. Thornton, J. Ullom, E.M. Vavagiakis, B. Westbrook, Z. Xu, N. Zhu, Simons observatory microwave squid multiplexing readout - cryogenic RF amplifier and coaxial chain design. J. Low Temp. Phys. 199, 807–816 (2020). https://doi.org/10.1007/s10909-020-02429-y
|
|