The Magnetic Microbolometer: a proposal for QUBIC Next Gen

Author:

Hampel Matías1,Almela Alejandro1,Bonaparte Juan2,Neira Jesús Bonilla1,Ferreyro Luciano1,Fuster Alan1,Redondo Manuel García1,Gartmann Robert3,Geria Juan1,Müller Nahuel1,Muscheid Timo3,Salum Juan1,Platino Manuel1,Ardila Luis3,Sander Oliver3,Wegner Mathias4,Kempf Sebastian4,Weber Marc3,Etchegoyen Alberto1

Affiliation:

1. Instituto de Tecnologías en Detección y Astropartículas

2. Comisión Nacional de Energía Atómica

3. Institute of Data Processing and Electronics

4. Institute of Micro- and Nanoelectronic Systems

Abstract

Abstract In this paper, the proposal for a new multichroic pixel camera for the QUBIC instrument is presented, which aims to measure the B-mode polarization of the Cosmic Microwave Background. The camera features antenna-coupled magnetic microbolometers (MMB) read out by a microwave SQUID multiplexer and software-defined radio-based room temperature electronics, which are specifically optimized for MMB readout. The architecture of the detectors and their readout system is introduced, and the main design considerations are also discussed.The initial results of the simulation study suggest that MMBs are capable of achieving background limited detection of the sky when used in an instrument like QUBIC. Additionally, the time response of these detectors appears to be sufficiently fast for the given telescope scan speed and beam size.

Publisher

Research Square Platform LLC

Reference11 articles.

1. {The QUBIC collaboration} (2022) {QUBIC I: Overview and science program}. {Journal of Cosmology and Astroparticle Physics} 2022(04): 034 https://doi.org/10.1088/1475-7516/2022/04/034, IOP Publishing, apr, https://dx.doi.org/10.1088/1475-7516/2022/04/034

2. {The QUBIC collaboration} (2022) {QUBIC IV: Performance of TES bolometers and readout electronics}. {Journal of Cosmology and Astroparticle Physics} 2022(04): 037 https://doi.org/10.1088/1475-7516/2022/04/037, IOP Publishing, apr, https://dx.doi.org/10.1088/1475-7516/2022/04/037

3. {J. A. B. Mates and G. C. Hilton and K. D. Irwin and L. R. Vale and K. W. Lehnert} (2008) {Demonstration of a multiplexer of dissipationless superconducting quantum interference devices}. {Applied Physics Letters} 92(2): 023514 https://doi.org/10.1063/1.2803852, https://doi.org/10.1063/1.2803852, 0003-6951, {We report on the development of a microwave superconducting quantum interference device (SQUID) multiplexer to read out arrays of low-temperature detectors. In this frequency-division multiplexer, superconducting resonators with different frequencies couple to a common transmission line and each resonator couples to a different dissipationless SQUID. We demonstrate multiple designs, with high-Q values (4100 –18 000), noise as low as 0.17 μ Φ0 ∕Hz, and a naturally linear readout scheme based on flux modulation. This multiplexing approach is compatible with superconducting transition-edge sensors and magnetic calorimeters and is capable of multiplexing more than a thousand detectors in a single transmission line.}, 01

4. {J.M. Geria and M.R. Hampel and S. Kempf and J. Bonaparte and L.P. Ferreyro and M. Garcia Redondo and A. Almela and J. Salum and N. M üller and J. Bonilla-Neira and A. Fuster and M. Platino and A. Etchegoyen} (2023) {Suitability of magnetic microbolometers based on paramagnetic temperature sensors for CMB polarization measurements}. {Journal of Astronomical Telescopes, Instruments, and Systems} 9: https://doi.org/10.1117/1.JATIS.9.1.016002, 02

5. {J. A. B. Mates and K. D. Irwin and L. R. Vale and G. C. Hilton and J. Gao and K. W. Lehnert} (2012) {Flux-Ramp Modulation for SQUID Multiplexing}. {Journal of Low Temperature Physics} 167: 707-712 https://doi.org/10.1007/s10909-012-0518-6, https://doi.org/10.1007/s10909-012-0518-6, 1573-7357, {SQUIDs are typically operated in a flux-locked loop to linearize their response to input flux. However, a flux-locked loop is not possible with a microwave SQUID multiplexer. We describe an alternative technique called flux-ramp modulation and report its successful implementation.}, 06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3