Advances in the Goertzel Filter Bank Channelizer for Cryogenic Sensors Readout

Author:

Ferreyro L. P.,García Redondo M. E.,Salum J. M.,Muscheid T.,Hampel M.,Almela A.,Fuster A.,Geria J. M.,Bonaparte J.,Bonilla-Neira J.,Ardila-Perez L. E.,Gartmann R.,Müller N.,Wegner M.,Sander O.,Platino M.,Kempf S.,Etchegoyen A.,Weber M.

Abstract

AbstractNeutrino mass estimation experiments and cosmic microwave background (CMB) radiation surveys both employ low-temperature detectors (LTD) known as calorimeters and bolometers, respectively. These detectors operate typically between 10 and 300 mK. LTDs multiplexed by means of a microwave superconducting quantum interference device multiplexer (µMUX) demonstrated to be an excellent device for the readout of several detectors in the microwave region. This entails generating a multi-tonal signal and its subsequent readout. A single-tone detection method based on a Goertzel filter bank (GFB) channelizer was used for the readout of the aforementioned signal, implemented in a software-defined radio readout architecture within a field-programmable gate array. The measurements presented here demonstrate remarkable results in validating the suitability of the GFB channelizer for this system.

Funder

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Reference18 articles.

1. L. Gastaldo, K. Blaum, K. Chrysalidis, T.D. Goodacre, A. Domula, M. Door, H. Dorrer, C.E. Düllmann, K. Eberhardt, S. Eliseev, C. Enss, A. Faessler, P. Filianin, A. Fleischmann, D. Fonnesu, L. Gamer, R. Haas, C. Hassel, D. Hengstler, J. Jochum, K. Johnston, U. Kebschull, S. Kempf, T. Kieck, U. Köster, S. Lahiri, M. Maiti, F. Mantegazzini, B. Marsh, P. Neroutsos, Y.N. Novikov, P.C.O. Ranitzsch, S. Rothe, A. Rischka, A. Saenz, O. Sander, F. Schneider, S. Scholl, R.X. Schüssler, C. Schweiger, F. Simkovic, T. Stora, Z. Szücs, A. Türler, M. Veinhard, M. Weber, M. Wegner, K. Wendt, K. Zuber, The electron capture in $$^{163}Ho$$ experiment - ECHo. Eur. Phys. J. Spec. Top. 226, 1623–1694 (2017). https://doi.org/10.1140/epjst/e2017-70071-y

2. A. Fleischmann, L. Gastaldo, S. Kempf, A. Kirsch, A. Pabinger, C. Pies, J.-P. Porst, P. Ranitzsch, S. Schäfer, F. Seggern, T. Wolf, C. Enss, G.M. Seidel, B. Young, B. Cabrera, A. Miller, Metallic magnetic calorimeters In: AIP Conference Proceedings (AIP Publishing, 2009), pp. 571–578. https://doi.org/10.1063/1.3292407

3. J.-C. Hamilton, L. Mousset, E.S. Battistelli, P. Bernardis, M.-A. Bigot-Sazy, P. Chanial, R. Charlassier, G. D’Alessandro, M.D. Petris, M.M.G. Lerena, L. Grandsire, S. Landau, S. Mandelli, S. Marnieros, S. Masi, A. Mennella, C. O’Sullivan, M. Piat, G. Ricciardi, C.G. Scóccola, M. Stolpovskiy, A. Tartari, S.A. Torchinsky, F. Voisin, M. Zannoni, P. Ade, J.G. Alberro, A. Almela, G. Amico, L.H. Arnaldi, D. Auguste, J. Aumont, S. Azzoni, S. Banfi, A. Baù, B. Bélier, D. Bennett, L. Bergé, J.-P. Bernard, M. Bersanelli, J. Bonaparte, J. Bonis, E. Bunn, D. Burke, D. Buzi, F. Cavaliere, C. Chapron, A.C.C. Cerutti, F. Columbro, A. Coppolecchia, G.D. Gasperis, M.D. Leo, S. Dheilly, C. Duca, L. Dumoulin, A. Etchegoyen, A. Fasciszewski, L.P. Ferreyro, D. Fracchia, C. Franceschet, K.M. Ganga, B. García, M.E.G. Redondo, M. Gaspard, D. Gayer, M. Gervasi, M. Giard, V. Gilles, Y. Giraud-Heraud, M.G. Berisso, M. González, M. Gradziel, M.R. Hampel, D. Harari, S. Henrot-Versillé, F. Incardona, E. Jules, J. Kaplan, C. Kristukat, L. Lamagna, S. Loucatos, T. Louis, B. Maffei, W. Marty, A. Mattei, A. May, M. McCulloch, L. Mele, D. Melo, L. Montier, L.M. Mundo, J.A. Murphy, J.D. Murphy, F. Nati, E. Olivieri, C. Oriol, A. Paiella, F. Pajot, A. Passerini, H. Pastoriza, A. Pelosi, C. Perbost, M. Perciballi, F. Pezzotta, F. Piacentini, L. Piccirillo, G. Pisano, M. Platino, G. Polenta, D. Prêle, R. Puddu, D. Rambaud, E. Rasztocky, P. Ringegni, G.E. Romero, J.M. Salum, A. Schillaci, S. Scully, S. Spinelli, G. Stankowiak, A.D. Supanitsky, J.-P. Thermeau, P. Timbie, M. Tomasi, C. Tucker, G. Tucker, D. Viganò, N. Vittorio, F. Wicek, M. Wright, A. Zullo, QUBIC I: overview and science program. J. Cosmol. Astropart. Phys. 2022, 034 (2022). https://doi.org/10.1088/1475-7516/2022/04/034

4. A.H. Guth, Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981). https://doi.org/10.1103/PhysRevD.23.347

5. A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108(6), 389–393 (1982). https://doi.org/10.1016/0370-2693(82)91219-9

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3