The role of parapodia and lack of photoacclimation in kleptoplasts of the sacoglossan sea slug Plakobranchus ocellatus

Author:

Richards Donà AngelaORCID,Evertsen Jussi,Johnsen Geir

Abstract

AbstractThe sacoglossan sea slug Plakobranchus ocellatus is a pantropical gastropod that pilfers and incorporates algal chloroplasts (kleptoplasts) into its digestive cells and benefits from the production of photosynthate. It is a mobile, reef forager with mottled, wing-like parapodia that provide good camouflage in sand and are typically observed closed over the kleptoplast-filled digestive tubules. Functional kleptoplasts continue to photosynthesize but are separated from the algal nuclei and are unable to divide within host cells. The mechanisms that enable kleptoplasts to endure are poorly understood and the extent and limitations of functionality have not yet been fully characterized. We investigated kleptoplasts in three tropical sacoglossan species, Elysia ornata, Thuridilla gracilis, and P. ocellatus, collected from different depths and light fields to identify pigments, quantify retention times, and determine photosynthetic parameters. We found that P. ocellatus had the highest estimated retention time and maintained the highest ratio of photoprotective to photosynthetic pigments. A subsequent manipulative experiment on P. ocellatus specimens collected at the same site, depth, and time involved exposure to three different irradiances and showed that kleptoplasts did not photoacclimate over the course of 7 d. No significant changes in in vivo kleptoplast photosynthetic parameters or corresponding spectral reflectance occurred when measuring kleptoplasts directly with open parapodia. Reflectance of closed parapodia, however, showed significant increases in the medium- and high-light treatments on day seven indicating localized kleptoplast degradation. Our results suggest that closed parapodia play an important role in kleptoplast protection by shielding internal kleptoplasts while permitting filtered light energy to reach kleptoplasts on the parapodial undersides. The cryptically patterned parapodia assume the role of photoprotectant, compensating for kleptoplast inability to photoacclimate. This allows P. ocellatus to forage in high-light, exposed, sandy areas and exploit algal food resources that may be unavailable or too risky for other sacoglossans.

Funder

norwegian research council

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3