Crawl away from the light! Assessing behavioral and physiological photoprotective mechanisms in tropical solar-powered sea slugs exposed to natural light intensities

Author:

Burgués Palau LaiaORCID,Senna GiuliaORCID,Laetz Elise M. J.ORCID

Abstract

AbstractPhotosynthesizers face a trade-off regarding light: they need enough to maintain high photosynthetic rates, yet excess leads to oxidative stress. Despite this, light and its detrimental effects are chronically underestimated. Solar-powered sea slugs (Sacoglossa: Gastropoda) provide the ideal lens with which to study this trade-off, since they steal chloroplasts from algae but do not inherit photoacclimation and photorepair capacities. We collected three slug species in Curaçao during March and December 2022, comparing the amount of light they received in nature to their optimal light intensities for photosynthesis, and their preferred light intensities. We then investigated behavioral and physiological photoprotection mechanisms to determine if and how they limit light. Finally, we examined oxidative activity under optimal and excess light. All three species were naturally exposed to more light (> 1000 µmol m−2 s−1) than is optimal or preferred. Elysia crispata (kleptoplast retention for > 3 months) is fully exposed to light in nature but reduces the light reaching its kleptoplasts via parapodial shading. Elysia velutinus retains kleptoplasts for ~ 2 weeks and hides in its macroalgal food, limiting light exposure. Both species displayed low amounts of oxidative activity under optimal light, which increased slightly under excess light. Elysia ornata retained chloroplasts for ~ 3 days, lacked observable photoprotection and always displayed high levels of oxidative activity, potentially explaining its limited capacity for kleptoplast retention. Furthermore, both E. velutinus and E. ornata display strong light-avoidance behaviors. This study clearly demonstrates links between high light intensities, photoprotection, and oxidative stress, highlighting the need for future studies that examine aquatic photosynthesizers under natural lighting.

Funder

Koninklijke Nederlandse Akademie van Wetenschappen

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Unitas Malacologica

Groninger Universiteitsfonds

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3