Food shaped photosynthesis: Photophysiology of the sea slug Elysia viridis fed with two alternative chloroplast donors

Author:

Morelli Luca,Cartaxana Paulo,Cruz Sónia

Abstract

Background Some Sacoglossa sea slugs steal and integrate chloroplasts derived from the algae they feed on into their cells where they continue to function photosynthetically, a process termed kleptoplasty. The stolen chloroplasts – kleptoplasts – can maintain their functionality up to several months and support animal metabolism. However, chloroplast longevity can vary depending on sea slug species and algal donor. In this study, we focused on Elysia viridis, a polyphagous species that is mostly found associated with the macroalga Codium tomentosum, but that was reported to eat other macroalgae, including Chaetomorpha sp. Methods We have investigated the changes in E. viridis physiology when provided with the two different food sources to evaluate to which extent the photosynthetic and photoprotective mechanisms of the algae chloroplasts matched those of the plastids once in the animal cells. To perform the study, we rely on the evaluation of chlorophyll a variable fluorescence to study the photophysiological state of the integrated kleptoplasts and high-performance liquid chromatography (HPLC) to study variations in the photosynthetic pigments. Results We observed that the photosynthetic efficiency of E. viridis is lower when fed with Chaetomorpha. Also, significant differences were observed in the non-photochemical quenching (NPQ) abilities of the sea slugs. While sea slugs fed with C. tomentosum react similarly to high-light stress as the alga, E. viridis hosting Chaetomorpha chloroplasts were unable to properly recover from photoinhibition or perform a functional xanthophyll cycle (XC). Conclusions Our results showed that, even if the sea slugs fed with the two algae show photosynthetic activities like the respective algal donors, not all the photoprotective mechanisms present in Chaetomorpha can be maintained in E. viridis. This indicates that the functionality of the kleptoplasts does not depend solely on their origin but also on the degree of compatibility with the animal species integrating them.

Funder

Fundação para a Ciência e a Tecnologia

Horizon Europe Framework Programme

Publisher

F1000 Research Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3