Author:
Zhu Zhongyunshen,Svensson Johannes,Persson Axel R.,Wallenberg Reine,Gromov Andrei V.,Wernersson Lars-Erik
Abstract
AbstractGaSb-based nanowires in a gate-all-around geometry are good candidates for binary p-type transistors, however they require the introduction of compressive strain to enhance the transport properties. Here, we for the first time demonstrate epitaxial GaSb-GaAsxSb1−x core-shell nanowires with a compressively strained core. Both axial and hydrostatic strain in GaSb core have been measured by X-ray diffraction (XRD) and Raman scattering, respectively. The optimal sample, almost without plastic relaxation, has an axial strain of −0.88% and a hydrostatic strain of −1.46%, leading to a noticeable effect where the light hole band is calculated to be 33.4 meV above the heavy hole band at the Γ-point. This valence band feature offers more light holes to contribute the transport process, and thus may provide enhanced hole mobility by reducing both the interband scattering and the hole effective mass. Our results show that lattice-mismatched epitaxial core-shell heterostructures of high quality can also be realized in the promising yet demanding GaSb-based system.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,General Materials Science,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献