Toward the molecular understanding of the action mechanism of Ascophyllum nodosum extracts on plants

Author:

De Saeger JonasORCID,Van Praet StanORCID,Vereecke DannyORCID,Park JihaeORCID,Jacques Silke,Han TaejunORCID,Depuydt StephenORCID

Abstract

Abstract The importance of biostimulants, defined as plant growth-promoting agents that differ notably from fertilizers, is increasing steadily because of their potential contribution to a worldwide strategy for securing food production without burdening the environment. Based on folkloric evidence and ethnographic studies, seaweeds have been useful for diverse human activities through time, including medicine and agriculture. Currently, seaweed extracts, especially those derived from the common brown alga Ascophyllum nodosum, represent an interesting category of biostimulants. Although A. nodosum extracts (abbreviated ANEs) are readily used because of their capacity to improve plant growth and to mitigate abiotic and biotic stresses, fundamental insights into how these positive responses are accomplished are still fragmentary. Generally, the effects of ANEs on plants have been attributed to their hormonal content, their micronutrient value, and/or the presence of alga-specific polysaccharides, betaines, polyamines, and phenolic compounds that would, alone or in concert, bring about the observed phenotypic effects. However, only a few of these hypotheses have been validated at the molecular level. Transcriptomics and metabolomics are now emerging as tools to dissect the action mechanisms exerted by ANEs. Here, we provide an overview of the available in planta molecular data that shed light on the pathways modulated by ANEs that promote plant growth and render plants more resilient to diverse stresses, paving the way toward the elucidation of the modus operandi of these extracts.

Funder

Ghent University Bijzonder Onderzoeksfonds Methusalem

Ghent University Multidisciplinary Partnership

Ghent University Bijzonder Onderzoekfonds

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3