Reduced Effect of Commercial Leonardite and Seaweed Extract on Lettuce Growth under Mineral, Organic, and No Fertilization Regimes

Author:

Aguiar Peltier123ORCID,Corrêa Gediane Maria Garcia12,Rodrigues Manuel Ângelo12ORCID,Arrobas Margarida12ORCID

Affiliation:

1. Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal

2. Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal

3. Instituto Superior Politécnico do Cuanza Sul (ISPCS), Rua 12 de Novembro, Sumbe P.O. Box 82, Angola

Abstract

In this study, two commercial products based on the main groups of contemporary biostimulants—a commercial leonardite and a seaweed extract—were tested with the objective of assessing the conditions under which they can enhance lettuce (Lactuca sativa L.) performance, particularly to determine if synergies with conventional fertilization methods can be observed. The experimental protocol was arranged as a factorial design with two factors: organic or mineral fertilization × plant biostimulant. The organic or mineral fertilization factor included five levels: two rates of a nitrogen (N) fertilizer (40 (Nmin40) and 80 (Nmin80) kg ha−1 of N), the same N rates applied as an organic amendment (Norg40 and Norg80), and an unfertilized control (N0). The plant biostimulants used were a commercial leonardite (leonardite) for soil application before planting, a commercial seaweed extract (algae) for foliar application during the growing season, and a control without plant biostimulant. Leonardite significantly increased lettuce dry matter yield (DMY) compared to the control only in the first growing cycle (11.5 and 13.5 g plant−1) and showed no significant interaction with conventional fertilization. It also consistently increased phosphorus (P) levels in the plant tissues. The seaweed extract did not show any effect on the plant, nor did it have any interactions with conventional fertilization regarding DMY. In contrast, with mineral fertilization, lettuce DMY increased from 8.0 and 4.0 g plant−1 (N0) to 22.2 and 12.0 g plant−1 (Nmin80) in the first and second growing cycles, respectively. The response to organic fertilization was lower, yet DMY still increased from 4.0 to 8.1 g plant−1 in the second growing cycle. Generally, this type of plant biostimulant is tested under some form of environmental stress, where it often yields positive results. In this study, the optimal cultivation conditions maintained for the lettuce in the pots likely explain the limited response to the biostimulants. This study suggests that the product labels should more clearly indicate whether they are recommended for general cultivation conditions or specifically for situations where a particular environmental stress can be anticipated.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3