Vector Field based Control of Quadrotor UAVs for Wildfire Boundary Monitoring

Author:

Feng LichengORCID,Katupitiya Jay

Abstract

AbstractAccurate real-time information about an ongoing wildfire event is important for realizing effective and safe wildfire fighting. This paper is intended to solve the problem of guiding Unmanned Air Vehicles (UAVs) equipped with onboard cameras to monitor dynamic wildfire boundaries. According to whether the prior knowledge of the wildfire boundary is available or not, we propose a model-based vector field and a model-free vector field for UAV guidance. By describing the wildfire boundary with a zero level set function, the propagation of the wildfire boundary is modeled with the Hamilton-Jacobi equation. If the prior knowledge of the boundary is available, the typical radial basis function thin-plate spline is adopted to approximate the wildfire boundary and predicts its propagation. Then a 3D analytical vector field is constructed for an implicit function representing the wildfire boundary. If only partial observation of the wildfire boundary within the UAV’s field of view is available, the horizontal error between the UAV and its sensed segment of wildfire boundary and the vertical error between the UAV and the desired altitude are utilized to construct a 3D distance error based vector field, directly. To guide the UAV to converge to and patrol along the advancing wildfire boundary, the complex nonlinear dynamics of the UAV is exploited with differential flatness and incorporated with the above mentioned vector fields to design a nonlinear geometric controller. Computer simulations have been conducted to evaluate the performance of the proposed 3D vector field based controllers with both synthetic and real data, and simulation results demonstrate that the proposed algorithms can be effective methods to monitor the advancing wildfire boundaries.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Methodology for the Synthesis of a Multicopter Controller Acting as a Swarm Agent using the Thermal Motion Equivalent Method;Mekhatronika, Avtomatizatsiya, Upravlenie;2024-01-10

2. Small Fixed-Wing Unmanned Aerial Vehicle Path Following Under Low Altitude Wind Shear Disturbance;IEEE Transactions on Intelligent Transportation Systems;2024

3. Fourier-Based Multi-Agent Formation Control to Track Evolving Closed Boundaries;IEEE Transactions on Circuits and Systems I: Regular Papers;2023-11

4. The Root-Mean-Square Velocity Stabilization of Swarm Multicopters Interacted by the Thermal Motion Equivalent Method;2023 7th International Conference on Information, Control, and Communication Technologies (ICCT);2023-10-02

5. Thermal Motion Equivalent Method Application for Multicopter Swarm in Exploration Task;2023 7th International Conference on Information, Control, and Communication Technologies (ICCT);2023-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3