Accurate Detection of Occluded Wildfire Boundary

Author:

Feng LichengORCID,Katupitiya Jay

Abstract

AbstractInaccurate localization of wildfire boundary will adversely affect the efficiency of fire fighting, especially in the case of limited water for aerial dumping. This paper formulates the detection of occluded wildfire boundary as a shape completion problem and introduces a new solution. Different from traditional shape completion algorithms which only consider the contour geometry, the proposed algorithm takes partially visible fire surface geometry into consideration, and generates extrapolated feature points to detect the invisible section. The proposed solution involves two processes: firstly, fire surfaces above the occluded segments are extrapolated to the ground level with a Hurwitz–Radon operator based algorithm to obtain feature points in the invisible segments of the wildfire boundary; secondly, interpolating extra control points with a Bezier curve to reduce uncertainty and improve the accuracy of fire boundary detection. To demonstrate the effectiveness and efficiency of the proposed algorithm, a series of numerical simulations were performed. Simulated results show that the proposed algorithm in this study can detect the occluded wildfire boundary that conforms with the ground truth of the invisible fire boundary.

Funder

University of New South Wales

Publisher

Springer Science and Business Media LLC

Subject

Safety, Risk, Reliability and Quality,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Navigation for Prioritized Wildfire Boundary Tracking;Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022);2023

2. Vector Field based Control of Quadrotor UAVs for Wildfire Boundary Monitoring;Journal of Intelligent & Robotic Systems;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3