Author:
Coelho Andre,Sarkisov Yuri,Wu Xuwei,Mishra Hrishik,Singh Harsimran,Dietrich Alexander,Franchi Antonio,Kondak Konstantin,Ott Christian
Abstract
AbstractThis paper introduces a passivity-based control framework for multi-task time-delayed bilateral teleoperation and shared control of kinematically-redundant robots. The proposed method can be seen as extension of state-of-the art hierarchical whole-body control as it allows for some of the tasks to be commanded by a remotely-located human operator through a haptic device while the others are autonomously performed. The operator is able to switch among tasks at any time without compromising the stability of the system. To enforce the passivity of the communication channel as well as to dissipate the energy generated by the null-space projectors used to enforce the hierarchy among the tasks, the Time-Domain Passivity Approach (TDPA) is applied. The efficacy of the approach is demonstrated through its application to the DLR Suspended Aerial Manipulator (SAM) in a real telemanipulation scenario with variable time delay, jitter, and package loss.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献