Test Methods for the Mechanical Characterization of Flexure Hinges

Author:

Meyer P.ORCID,Finder J.ORCID,Hühne C.ORCID

Abstract

Abstract Background The design of compliant mechanisms requires detailed knowledge about the stiffness properties of their flexible segments. However, there are no standardized test methods for flexure hinges, and therefore the influence of manufacturing-specific effects, such as anisotropy, on the stiffness properties cannot be quantified. Objective This paper presents novel test methods for variable cross-section flexure hinges subjected to large deformations and pure bending loading, which determine the bending stiffness of flexure hinges over their entire deflection range using a universal testing machine. Methods The novel test methods for flexure hinges are based on the tensile test, the four-point bending test (FPBT), and the column bending test (CBT). These test methods were initially formulated for constant cross-section specimens, but are adapted in this study to examine variable cross-section specimens. The derived test methods are validated by using isotropic materials with well-known properties and by comparing the calculated deflections with deflections measured by means of image processing. Results The deflection validation shows that the adapted CBT (aCBT) is accurate over the entire deflection range, achieving curvature of up to $$\kappa =0.40\;\text {mm}^{-1}$$ κ = 0.40 mm - 1 , whereas the maximum curvature in the adapted FPBT (aFPBT) is limited by the test methodology to about $$\kappa =0.15\;\text {mm}^{-1}$$ κ = 0.15 mm - 1 . At small strains, the flexural modulus determined in the aCBT and aFPBT agrees well with the Young’s modulus determined in the tensile test, as would be expected for isotropic materials. Conclusion The aCBT proves to be a suitable test method for flexure hinges at large deflections, whereas the stiffness characterization at small deflections can be performed with both the aCBT and the aFPBT. The presented test methods validated on isotropic materials form the basis for characterizing anisotropic flexure hinges with geometry-dependent stiffness properties.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität Braunschweig

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3