Development and Testing of Woven FRP Flexure Hinges for Pressure-Actuated Cellular Structures with Regard to Morphing Wing Applications

Author:

Meyer PatrickORCID,Boblenz Johannes,Sennewald CorneliaORCID,Vorhof MichaelORCID,Hühne ChristianORCID,Cherif ChokriORCID,Sinapius MichaelORCID

Abstract

Shape-variable structures can change their geometry in a targeted way and thus adapt their outer shape to different operating conditions. The potential applications in aviation are manifold and far-reaching. The substitution of conventional flaps in high-lift systems or even the deformation of entire wing profiles is conceivable. All morphing approaches have to deal with the same challenge: A conflict between minimizing actuating forces on the one hand, and maximizing structural deflections and resistance to external forces on the other. A promising concept of shape variability to face this challenging conflict is found in biology. Pressure-actuated cellular structures (PACS) are based on the movement of nastic plants. Firstly, a brief review of the holistic design approach of PACS is presented. The aim of the following study is to investigate manufacturing possibilities for woven flexure hinges in closed cellular structures. Weaving trials are first performed on the material level and finally on a five-cell PACS cantilever. The overall feasibility of woven fiber reinforced plastics (FRP)-PACS is proven. However, the results show that the materials selection in the weaving process substantially influences the mechanical behavior of flexure hinges. Thus, the optimization of manufacturing parameters is a key factor for the realization of woven FRP-PACS.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3