Theoretical Stiffness Modeling and Application Research of a Novel Stacked Flexure Hinge

Author:

Zhang Yonghong1,Wang Chengmin1,Tang Shuangquan2,Jiang You1,Chen Hong1,Ge Wenjie1

Affiliation:

1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China

2. First Aircraft Design Institute of AVIC, Xi’an 710089, China

Abstract

This study investigates and designs a novel stacked hinge with low stiffness, large rotation angle, high strength, and length-adaptive functionality. Firstly, based on the large deformation theory of cantilever beams and relevant theories of leaf springs, a stiffness theoretical model for stacked flexure hinges is established. Subsequently, the stiffness theoretical model is further modified by considering the frictional force, aiming to reduce errors. Secondly, a stiffness-testing experimental platform for this flexure hinge is designed to verify the correctness of the theoretical model. Finally, the stacked flexure hinge is applied to the trailing-edge mechanism of a variable camber wing, achieving a deformation target of 15° downward bending of the wing and demonstrating good shape retention, thereby proving the feasibility of the application.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference27 articles.

1. Analysis of the displacement amplification ratio of bridge-type flexure hinge;Ma;Sens. Actuators A Phys,2006

2. Development of a novel flexure-based microgripper for high precision micro-object manipulation;Zubir;Sens. Actuators A Phys.,2009

3. Design, fabrication and testing of a serial kinematic MEMS XY stage for multifinger manipulation;Kim;J. Micromech. Microeng.,2012

4. Henein, S., Spanoudakis, P., Droz, S., Myklebust, L.I., and Onillon, E. (2003, January 25). Flexure pivot for aerospace mechanisms. Proceedings of the 10th European Space Mechanisms and Tribology Symposium, Technological Park, San Sebastián, Spain.

5. Meyer, P., Boblenz, J., Sennewald, C., Vorhof, M., Hühne, C., Cherif, C., and Sinapius, M. (2019). Development and Testing of Woven FRP Flexure Hinges for Pressure-Actuated Cellular Structures with Regard to Morphing Wing Applications. Aerospace, 6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3