Towards Design Optimization of Compliant Mechanisms: A Hybrid Pseudo-Rigid-Body Model–Finite Element Method Approach and an Accurate Empirical Compliance Equation for Circular Flexure Hinges

Author:

Kabganian Masoud1,Hashemi Seyed M.1ORCID

Affiliation:

1. Department of Aerospace Engineering, Toronto Metropolitan University (Formerly Ryerson University), Toronto, ON M5B 2K3, Canada

Abstract

Innovative designs such as morphing wings and terrain adaptive landing systems are examples of biomimicry and innovations inspired by nature, which are actively being investigated by aerospace designers. Morphing wing designs based on Variable Geometry Truss Manipulators (VGTMs) and articulated helicopter robotic landing gear (RLG) have drawn a great deal of attention from industry. Compliant mechanisms have become increasingly popular due to their advantages over conventional rigid-body systems, and the research team led by the second author at Toronto Metropolitan University (TMU) has set their long-term goal to be exploiting these systems in the above aerospace applications. To gain a deeper insight into the design and optimization of compliant mechanisms and their potential application as alternatives to VGTM and RLG systems, this study conducted a thorough analysis of the design of flexible hinges, and single-, four-, and multi-bar configurations as a part of more complex, flexible mechanisms. The investigation highlighted the flexibility and compliance of mechanisms incorporating circular flexure hinges (CFHs), showcasing their capacity to withstand forces and moments. Despite a discrepancy between the results obtained from previously published Pseudo-Rigid-Body Model (PRBM) equations and FEM-based analyses, the mechanisms exhibited predictable linear behavior and acceptable fatigue testing results, affirming their suitability for diverse applications. While including additional linkages perpendicular to the applied force direction in a compliant mechanism with N vertical linkages led to improved factors of safety, the associated increase in system weight necessitates careful consideration. It is shown herein that, in this case, adding one vertical bar increased the safety factor by 100N percent. The present study also addressed solutions for the precise modeling of CFHs through the derivation of an empirical polynomial torsional stiffness/compliance equation related to geometric dimensions and material properties. The effectiveness of the presented empirical polynomial compliance equation was validated against FEA results, revealing a generally accurate prediction with an average error of 1.74%. It is expected that the present investigation will open new avenues to higher precision in the design of CFHs, ensuring reliability and efficiency in various practical applications, and enhancing the optimization design of compliant mechanisms comprised of such hinges. A specific focus was put on ABS plastic and aluminum alloy 7075, as they are the materials of choice for non-load-bearing and load-bearing structural components, respectively.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3