Interpretable Dropout Prediction: Towards XAI-Based Personalized Intervention

Author:

Nagy MarcellORCID,Molontay RolandORCID

Abstract

AbstractStudent drop-out is one of the most burning issues in STEM higher education, which induces considerable social and economic costs. Using machine learning tools for the early identification of students at risk of dropping out has gained a lot of interest recently. However, there has been little discussion on dropout prediction using interpretable machine learning (IML) and explainable artificial intelligence (XAI) tools.In this work, using the data of a large public Hungarian university, we demonstrate how IML and XAI tools can support educational stakeholders in dropout prediction. We show that complex machine learning models – such as the CatBoost classifier – can efficiently identify at-risk students relying solely on pre-enrollment achievement measures, however, they lack interpretability. Applying IML tools, such as permutation importance (PI), partial dependence plot (PDP), LIME, and SHAP values, we demonstrate how the predictions can be explained both globally and locally. Explaining individual predictions opens up great opportunities for personalized intervention, for example by offering the right remedial courses or tutoring sessions. Finally, we present the results of a user study that evaluates whether higher education stakeholders find these tools interpretable and useful.

Funder

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

European Commission

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Education

Reference55 articles.

1. Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138–52160.

2. Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-generation hyperparameter optimization framework. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

3. Alyahyan, E., & Düştegör, D. (2020). Predicting academic success in higher education: literature review and best practices. International Journal of Educational Technology in Higher Education, 17(1), 1–21.

4. Avella, J. T., Kebritchi, M., Nunn, S. G., & Kanai, T. (2016). Learning analytics methods, benefits, and challenges in higher education: a systematic literature review. Online Learning, 20(2), 13–29.

5. Baranyi, M., Nagy, M., & Molontay, R. (2020). Interpretable deep learning for university dropout prediction. Proceedings of the 21st Annual Conference on Information Technology Education (pp. 13–19)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3