Deep FM-Based Predictive Model for Student Dropout in Online Classes
Author:
Affiliation:
1. Department of Computer Science and Engineering, College of Applied Studies and Community Services, King Saud University, Riyadh, Saudi Arabia
Funder
Researchers Supporting Project, King Saud University, Riyadh, Saudi Arabia
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Engineering,General Materials Science,General Computer Science,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/6287639/10005208/10239344.pdf?arnumber=10239344
Reference39 articles.
1. Stopout prediction in massive open online courses;taylor,2014
2. Predictive Modelling of Student Dropout Using Ensemble Classifier Method in Higher Education
3. Statistical Learning for Predicting School Dropout in Elementary Education: A Comparative Study
4. Student dropout prediction using machine learning techniques;dasi;Int J Intell Syst Appl Eng,2022
5. Predicting MOOC Dropout over Weeks Using Machine Learning Methods
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A study of online academic risk prediction based on neural network multivariate time series features;Concurrency and Computation: Practice and Experience;2024-08-06
2. AI in Preventing Dropout in Distance Higher Education: A Systematic Literature Review;2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET);2024-05-16
3. Advancing Sustainable Learning Environments: A Literature Review on Data Encoding Techniques for Student Performance Prediction using Deep Learning Models in Education;E3S Web of Conferences;2024
4. Identifying and Understanding Student Dropouts Using Metaheuristic Optimized Classifiers and Explainable Artificial Intelligence Techniques;IEEE Access;2024
5. A Study of Online Academic Risk Prediction Based on Multivariate Time Series Features;2023-12-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3