Abstract
AbstractStudent success plays a vital role in educational institutions, as it is often used as a metric for the institution’s performance. Early detection of students at risk, along with preventive measures, can drastically improve their success. Lately, machine learning techniques have been extensively used for prediction purpose. While there is a plethora of success stories in the literature, these techniques are mainly accessible to “computer science”, or more precisely, “artificial intelligence” literate educators. Indeed, the effective and efficient application of data mining methods entail many decisions, ranging from how to define student’s success, through which student attributes to focus on, up to which machine learning method is more appropriate to the given problem. This study aims to provide a step-by-step set of guidelines for educators willing to apply data mining techniques to predict student success. For this, the literature has been reviewed, and the state-of-the-art has been compiled into a systematic process, where possible decisions and parameters are comprehensively covered and explained along with arguments. This study will provide to educators an easier access to data mining techniques, enabling all the potential of their application to the field of education.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Education
Reference101 articles.
1. Adekitan, A. I. (2018). “Data mining approach to predicting the performance of first year student in a university using the admission requirements,” no. Aina 2002.
2. Adekitan, A. I., & Salau, O. (2019). The impact of engineering students’ performance in the first three years on their graduation result using educational data mining. Heliyon, 5(2), e01250.
3. Agrawal, S. (2005). Database Management Systems Fast Algorithms for Mining Association Rules. In In Proc. 20th int. conf. very large data bases, VLDB, (pp. 487–499).
4. Ahmad, F., Ismail, N. H., & Aziz, A. A. (2015). The Prediction of Students ’ Academic Performance Using Classification Data Mining Techniques, 9(129), 6415–6426.
5. Al-barrak, M. A., & Al-razgan, M. (2016). Predicting Students Final GPA Using Decision Trees : A Case Study. International Journal of Information and Education Technology, 6(7), 528–533.
Cited by
259 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献