Evaluating crude whey for bioethanol production using non-Saccharomyces yeast, Kluyveromyces marxianus

Author:

Tesfaw AsmamawORCID,Oner Ebru Toksoy,Assefa Fassil

Abstract

AbstractEthanol production from non-food substrate is strongly recommended to avoid competition with food production. Whey, which is rich in nutrients, is one of the non-food substrate for ethanol production by Kluyveromyces spp. The purpose of this study was to optimize ethanol from different crude (non-deproteinized, non-pH adjusted, and non-diluted) whey using K. marxianus ETP87 which was isolated from traditional yoghurt. The sterilized and non-sterilized whey were employed for K. marxianus ETP87 substrate to evaluate the yeast competition potential with lactic acid and other microflora in whey. The effect of pH and temperature on ethanol productivity from whey was also investigated. Peptone, yeast extract, ammonium sulfate ((NH4)2SO4), and urea were supplemented to whey in order to investigate the requirement of additional nutrient for ethanol optimization. The ethanol obtained from non-sterilized whey was slightly and statistically lower than sterilized whey. The whey storage at 4 °C didn’t guarantee the constant lactose presence at longer preservation time. Significantly high amount of ethanol was attained from whey without pH adjustment (3.9) even if it was lower than pH controlled (5.0) whey. The thermophilic yeast, K. marxianus ETP87, yielded high ethanol between 30 and 35 °C, and the yeast was able to produce high ethanol until 45 °C, and significantly lower ethanol was recorded at 50 °C. The ammonium sulfate and peptone enhanced ethanol productivity, whereas yeast extract and urea depressed the yeast ethanol fermentation capability. The K. marxianus ETP87, the yeast isolated from traditional yoghurt, is capable of producing ethanol from non-sterilized and non-deproteinized substrates.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3