Affiliation:
1. 0000 0000 9188 055X grid.267139.8 Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology 200093 Shanghai China
2. 0000000119573309 grid.9227.e Bioengineering Research Center, Guangzhou Institute of Advanced Technology Chinese Academy of Sciences 511458 Guangzhou China
3. Shijiazhuang Junlebao Dairy Co. Ltd. 050211 Shijiazhuang China
Abstract
Abstract
Streptococcus thermophilus is one of the most important homo-fermentative thermophilic bacteria, which is widely used as a starter culture in dairy industry. Both wild-type galactose-negative (Gal−) S. thermophilus AR333 and galactose-positive (Gal+) S. thermophilus S-3 in this study were isolated from Chinese traditional dairy products. Here, to access the mechanism of the difference of galactose utilization between strains AR333 and S-3, the expression of gal–lac operons was examined using real-time qPCR in the presence of different sugars, and the gene organization of gal–lac operons was characterized using comparative genomics analysis. As compared with medium containing glucose, the expression of gal–lac operons in AR333 and S-3 was significantly activated (> 5-fold) in the presence of galactose or lactose in the medium. More importantly, the expression of gal operon in S-3 was higher than that of AR333, suggesting that the strength of gal promoter in AR333 and S-3 may be different. The genomes of AR333 and S-3 were the first time sequenced to provide insight into the difference of gal–lac operons in these two strains. Comparative genomics analysis showed that gene order and individual gene size of gal–lac operons are conserved in AR333 and S-3. The DNA sequence of gal operon responsible for galactose utilization between AR333 and S-3 is almost identical except that galK promoter of S-3 possesses single base pair mutation (G to A substitution) at -9 box galK region. Moreover, the expression of red fluorescent protein can be activated by galK promoter of S-3, but cannot by galK promoter of AR333 in galactose medium, suggesting that gal operon is silent in AR333 and active in S-3 under galactose-containing medium. Overall, our results indicated that single point mutation at -9 box in the galK promoter can significantly affect the expression of gal operon and is largely responsible for the Gal+ phenotype of S. thermophilus.
Funder
National Natural Science Foundation of China
Nationa Natural Science Foundation of China
National Key R&D Program of China
Natural Science Foundation of Shanghai
Guangdong Sci. & Tech project
Nansha District Sci. & Tech project
?Shuguang Program? by Shanghai Education Development Foundation and Shanghai Municipal Education Commission
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献