Sequential improvement of rimocidin production in Streptomyces rimosus M527 by introduction of cumulative drug-resistance mutations

Author:

Zhao Yanfang1,Song Zhangqing1,Ma Zheng1,Bechthold Andreas2,Yu Xiaoping1

Affiliation:

1. 0000 0004 1755 1108 grid.411485.d Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences China Jiliang University Xueyuan Street, Xiasha Higher Education District 310018 Hangzhou Zhejiang People’s Republic of China

2. grid.5963.9 Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology University of Freiburg 79104 Freiburg Germany

Abstract

Abstract Rimocidin is a polyene macrolide that exhibits a strong inhibitory activity against a broad range of plant-pathogenic fungi. In this study, fermentation optimization and ribosome engineering technology were employed to enhance rimocidin production in Streptomyces rimosus M527. After the optimization of fermentation, rimocidin production in S. rimosus M527 increased from 0.11 ± 0.01 to 0.23 ± 0.02 g/L during shake-flask experiments and reached 0.41 ± 0.05 g/L using 5-L fermentor. Fermentation optimization was followed by the generation of mutants of S. rimosus M527 through treatment of the strain with different concentrations of gentamycin (Gen) or rifamycin. One Genr mutant named S. rimosus M527-G37 and one Rifr mutant named S. rimosus M527-R5 showed increased rimocidin production. Double-resistant (Genr and Rifr) mutants were selected using S. rimosus M527-G37 and S. rimosus M527-R5, and subsequently tested. One mutant, S. rimosus M527-GR7, which was derived from M527-G37, achieved the greatest cumulative improvement in rimocidin production. In the 5-L fermentor, the maximum rimocidin production achieved by S. rimosus M527-GR7 was 25.36% and 62.89% greater than those achieved by S. rimosus M527-G37 and the wild-type strain S. rimosus M527, respectively. Moreover, in the mutants S. rimosus M527-G37 and S. rimosus M527-GR7 the transcriptional levels of ten genes (rimA  sr to rimK  sr) located in the gene cluster involved in rimocidin biosynthesis were all higher than those in the parental strain M527 to varying degrees. In addition, after expression of the single rimocidin biosynthetic genes in S. rimosus M527 a few recombinants showed an increase in rimocidin production. Expression of rimE led to the highest production.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3