Enhanced Pentostatin Production in Actinomadura sp. by Combining ARTP Mutagenesis, Ribosome Engineering and Subsequent Fermentation Optimization

Author:

Zhang Hongyu1ORCID,Zhang Deguang1,Liu Ran1,Lou Tingting2,Tan Ruyue1,Wang Suying1

Affiliation:

1. Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China

2. Animal, Plant and Foodstuffs Inspection Center of Tianjin Customs, Tianjin 300461, China

Abstract

The special structure of pentostatin causes it to possess a wide spectrum of biological and pharmacological properties, and it has been extensively employed to treat malignant tumors and is the first-line treatment for hairy cell leukemia. Pentostatin is mainly distributed in several actinomycetes and fungi species. However, its low titer in microbes is not able to meet medical needs. Here, we report a strain improvement strategy based on combined atmospheric and room-temperature plasma (ARTP) mutagenesis and ribosome engineering screening, as well as fermentation optimization, for enhanced pentostatin production. The original strain, Actinomadura sp. ATCC 39365, was treated with ARTP and screened by ribosome engineering to obtain one stable pentostatin high-yield mutant Actinomadura sp. S-15, which produced 86.35 mg/L pentostatin, representing a 33.79% increase compared to Actinomadura sp. ATCC 39365. qRT-PCR analysis revealed that pentostatin biosynthesis-related gene expression was significantly upregulated in Actinomadura sp. S-15. Then, to further enhance pentostatin production, the fermentation medium was optimized in flask culture and the pentostatin production of Actinomadura sp. S-15 reached 152.06 mg/L, which is the highest pentostatin production reported so far. These results demonstrate the effectiveness of combined ARTP mutation, ribosome engineering screening, and medium optimization for the enhancement of pentostatin production, and provide a methodology enabling the sustainable production of pentostatin on an industrial scale.

Funder

2021 Tianjin Graduate Research and Innovation Project

Tianjin College Students Innovation and Entrepreneurship Training Program

Publisher

MDPI AG

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3