Effects of the Coculture Initiation Method on the Production of Secondary Metabolites in Bioreactor Cocultures of Penicillium rubens and Streptomyces rimosus

Author:

Boruta Tomasz1,Ścigaczewska Anna1,Ruda Agnieszka1,Bizukojć Marcin1

Affiliation:

1. Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 93-005 Lodz, Poland

Abstract

Bioreactor cocultures involving Penicillium rubens and Streptomyces rimosus were investigated with regard to secondary metabolite production, morphological development, dissolved oxygen levels, and carbon substrate utilization. The production profiles of 22 secondary metabolites were analyzed, including penicillin G and oxytetracycline. Three inoculation approaches were tested, i.e., the simultaneous inoculation of P. rubens with S. rimosus and the inoculation of S. rimosus delayed by 24 or 48 h relative to P. rubens. The delayed inoculation of S. rimosus into the P. rubens culture did not prevent the actinomycete from proliferating and displaying its biosynthetic repertoire. Although a period of prolonged adaptation was needed, S. rimosus exhibited growth and the production of secondary metabolites regardless of the chosen delay period (24 or 48 h). This promising method of coculture initiation resulted in increased levels of metabolites tentatively identified as rimocidin B, 2-methylthio-cis-zeatin, chrysogine, benzylpenicilloic acid, and preaustinoid D relative to the values recorded for the monocultures. This study demonstrates the usefulness of the delayed inoculation approach in uncovering the metabolic landscape of filamentous microorganisms and altering the levels of secondary metabolites.

Funder

National Science Centre of the Republic of Poland

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3