Investigating the Stirred Tank Bioreactor Co-Cultures of the Secondary Metabolite Producers Streptomyces noursei and Penicillium rubens

Author:

Boruta Tomasz1,Ścigaczewska Anna1,Bizukojć Marcin1

Affiliation:

1. Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005 Łódź, Poland

Abstract

The stirred tank bioreactor co-cultures of the filamentous fungus Penicillium rubens and actinomycete Streptomyces noursei were studied with regard to secondary metabolite (SM) production, sugar consumption, and dissolved oxygen levels. In addition to the quantitative analysis of penicillin G and nystatin A1, the broad repertoire of 22 putatively identified products was semi-quantitatively evaluated with the use of UPLC-MS. Three co-cultivation variants differing with respect to the co-culture initiation method (i.e., the simultaneous inoculation of P. rubens and S. noursei and the 24 or 48 h inoculation delay of S. noursei relative to P. rubens) were investigated. All the co-cultures were carried out in parallel with the corresponding monoculture controls. Even though S. noursei showed the tendency to outperform P. rubens and inhibit the production of fungal secondary metabolites, the approach of simultaneous inoculation was effective in terms of enhancing the production of some S. noursei SMs, namely desferrioxamine E, deshydroxynocardamine, and argvalin. S. noursei displayed the capability of adaptation and SM production even after being inoculated into the 24 or 48 h culture of P. rubens. Interestingly, S. noursei turned out to be more efficient in terms of secondary metabolite production when its inoculation time relative to P. rubens was delayed by 48 h rather than by 24 h. The study demonstrated that the prolongation of inoculation delays can be beneficial for production-related performance in some co-culture systems.

Funder

National Science Centre of the Republic of Poland

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3