Study of the antibacterial activity of electro-activated solutions of salts of weak organic acids on Salmonella enterica, Staphylococcus aureus and Listeria monocytogenes

Author:

Liato Viacheslav12,Labrie Steve13,Aïder Mohammed12

Affiliation:

1. grid.23856.3a 0000000419368390 Institute of Nutrition and Functional Foods (INAF), Université Laval G1V 0A6 Quebec QC Canada

2. grid.23856.3a 0000000419368390 Department of Soil Sciences and Agri-Food Engineering Université Laval G1V 0A6 Quebec QC Canada

3. grid.23856.3a 0000000419368390 Department of Food Sciences Université Laval G1V 0A6 Quebec QC Canada

Abstract

Abstract This work assessed the antibacterial activity of electro-activated solutions of salts of weak organic acids (potassium acetate, potassium citrate and calcium lactate) on Salmonella enterica, Staphylococcus aureus and Listeria monocytogenes. This activity was compared in terms of minimal inhibitory (bactericidal) concentration to the effect of commercial acetic, citric and lactic acid at equivalent titratable acidity. Staining live/dead BacLight method was used to consider physiological state of bacteria following the evaluation of pathogenic strains during exposure to the tested solutions. The results demonstrated strong inhibitory activity of all electro-activated solutions. After 10 min of exposure to electro-activated potassium acetate, a reduction of ≥6 log CFU/ml of all bacteria was observed. The electro-activated potassium citrate demonstrated the lowest minimal inhibitory concentration. Nevertheless, its inactivation power was significantly higher than that of conjugated citric acid. Although electro-activated calcium lactate was found less effective in comparison with its conjugated acid form, after 10 min of contact with the tested pathogens, it induced a population reduction of 2.23, 2.97 and 5.57 log CFU/ml of S. aureus, L. monocytogenes and S. enterica, respectively.

Funder

Fonds Québécois de la Recherche sur la Nature et les Technologies

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3