Optoelectronics Simulation of CIGS-Based Solar Cells Using a Cd-Free Nontoxic ZrSxSe2−x as a Novel Buffer Layer

Author:

Moustafa M.ORCID,Al Zoubi T.,Yasin S.

Abstract

AbstractIn this work, we investigate the performance of CIGS-based thin-film solar cells employing the SCAPS-1D simulation package. The paper is mainly devoted to the development of the ZrSxSe2−x (where 0 ≤ x ≤ 2) transition metal dichalcogenide (TMDC) as a Cd-free, nontoxic, and abundant buffer layer, the first of its kind. In the first step, we have evaluated the impact of the p-MoSe2 interfacial layer between the GIGS absorber and Mo back contact. The J–V characteristic showed a higher slope, revealing that the p-MoSe2 layer at the CIGS/Mo interfaces beneficially on the CIGS/Mo hetero-contact, mediating the quasi-ohmic contact rather than the Schottky type. For the optimized solar cell using the ZrSxSe2−x as a buffer layer, the photovoltaic parameters, such as the short-circuit current density, open-circuit voltage, Fill Factor, and efficiency, were investigated versus the thickness, carrier concentration, and bandgap values. The results reveal an optimum efficiency of ~ 25.5% at a bandgap of 1.3 eV, corresponding to ZrS0.8Se1.2 (i.e., x = 0.8) and 180 nm thicknesses, at a high carrier concentration of 1 × 1018 cm−3. Furthermore, the solar cell performance is assessed with the increment of the operating temperature from 275 to 475 K. The observed decrease in the Voc is ascribed to the rise in the reverse saturation current associated with the higher temperatures. The study concludes an excellent potential for fabricating high-performance CIGS thin solar cells using a Cd-free nontoxic buffer layer.

Funder

American University in Cairo

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3