Abstract
AbstractA period-varying iterative learning control scheme is proposed for a robotic manipulator to learn a target trajectory that is planned by a human partner but unknown to the robot, which is a typical scenario in many applications. The proposed method updates the robot’s reference trajectory in an iterative manner to minimize the interaction force applied by the human. Although a repetitive human–robot collaboration task is considered, the task period is subject to uncertainty introduced by the human. To address this issue, a novel learning mechanism is proposed to achieve the control objective. Theoretical analysis is performed to prove the performance of the learning algorithm and robot controller. Selective simulations and experiments on a robotic arm are carried out to show the effectiveness of the proposed method in human–robot collaboration.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Science Applications
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献