Author:
Ascher Kenneth,DeVleming Kristin,Liu Yuchen
Abstract
AbstractWe show that the K-moduli spaces of log Fano pairs $$({\mathbb {P}}^3, cS)$$
(
P
3
,
c
S
)
where S is a quartic surface interpolate between the GIT moduli space of quartic surfaces and the Baily–Borel compactification of moduli of quartic K3 surfaces as c varies in the interval (0, 1). We completely describe the wall crossings of these K-moduli spaces. As the main application, we verify Laza–O’Grady’s prediction on the Hassett–Keel–Looijenga program for quartic K3 surfaces. We also obtain the K-moduli compactification of quartic double solids, and classify all Gorenstein canonical Fano degenerations of $${\mathbb {P}}^3$$
P
3
.
Publisher
Springer Science and Business Media LLC
Reference105 articles.
1. Ascher, K., Bejleri, D.: Compact moduli of elliptic K3 surfaces. Geom. Topol. (2019). arXiv:1902.10686(to appear)
2. Alper, J., Blum, H., Halpern-Leistner, D., Chenyang, X.: Reductivity of the automorphism group of K-polystable Fano varieties. Invent. Math. 222(3), 995–1032 (2020)
3. Ascher, K., DeVleming, K., Liu, Y.: Wall crossing for K-moduli spaces of plane curves. arXiv:1909.04576 (2019)
4. Ascher, K., DeVleming, K., Liu, Y.: K-moduli of curves on a quadric surface and K3 surfaces. J. Inst. Math. Jussieu (2020). arXiv:2006.06816(to appear)
5. Alexeev, V., Engel, P.: Compact moduli of K3 surfaces. arXiv:2101.12186 (2021)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献