The W(E6)$W(E_6)$‐invariant birational geometry of the moduli space of marked cubic surfaces

Author:

Schock Nolan1

Affiliation:

1. Department of Mathematics University of Illinois at Chicago Chicago Illinois USA

Abstract

AbstractThe moduli space of marked cubic surfaces is one of the most classical moduli spaces in algebraic geometry, dating back to the nineteenth‐century work of Cayley and Salmon. Modern interest in was restored in the 1980s by Naruki's explicit construction of a ‐equivariant smooth projective compactification of , and in the 2000s by Hacking, Keel, and Tevelev's construction of the Kollár–Shepherd‐Barron–Alexeev (KSBA) stable pair compactification of as a natural sequence of blowups of . We describe generators for the cones of ‐invariant effective divisors and curves of both and . For Naruki's compactification , we further obtain a complete stable base locus decomposition of the ‐invariant effective cone, and as a consequence find several new ‐equivariant birational models of . Furthermore, we fully describe the log minimal model program for the KSBA compactification , with respect to the divisor , where is the boundary and is the sum of the divisors parameterizing marked cubic surfaces with Eckardt points.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3