Reductive quotients of klt singularities

Author:

Braun Lukas,Greb Daniel,Langlois Kevin,Moraga Joaquín

Abstract

AbstractWe prove that the quotient of a klt type singularity by a reductive group is of klt type in characteristic 0. In particular, given a klt variety $X$ X endowed with the action of a reductive group $G$ G and admitting a quasi-projective good quotient $X\rightarrow X/\!/G$ X X / / G , we can find a boundary $B$ B on $X/\!/G$ X / / G so that the pair $(X/\!/G,B)$ ( X / / G , B ) is klt. This applies for example to GIT-quotients of klt varieties. Our main result has consequences for complex spaces obtained as quotients of Hamiltonian Kähler $G$ G -manifolds, for collapsings of homogeneous vector bundles as introduced by Kempf, and for good moduli spaces of smooth Artin stacks. In particular, it implies that the good moduli space parametrizing $n$ n -dimensional K-polystable smooth Fano varieties of volume $v$ v has klt type singularities. As a corresponding result regarding global geometry, we show that quotients of Mori Dream Spaces with klt Cox rings are Mori Dream Spaces with klt Cox ring. This in turn applies to show that projective GIT-quotients of varieties of Fano type are of Fano type; in particular, projective moduli spaces of semistable quiver representations are of Fano type.

Funder

Universität Duisburg-Essen

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3