Abstract
Abstract
We show that the K-moduli spaces of log Fano pairs
$\left(\mathbb {P}^1\times \mathbb {P}^1, cC\right)$
, where C is a
$(4,4)$
curve and their wall crossings coincide with the VGIT quotients of
$(2,4)$
, complete intersection curves in
$\mathbb {P}^3$
. This, together with recent results by Laza and O’Grady, implies that these K-moduli spaces form a natural interpolation between the GIT moduli space of
$(4,4)$
curves on
$\mathbb {P}^1\times \mathbb {P}^1$
and the Baily–Borel compactification of moduli of quartic hyperelliptic K3 surfaces.
Funder
Division of Mathematical Sciences
Publisher
Cambridge University Press (CUP)
Reference78 articles.
1. Positivity of the CM line bundle for families of K-stable klt Fano varieties
2. Second flip in the Hassett–Keel program: existence of good moduli spaces
3. [24] Fujita, K. , ‘K-stability of log Fano hyperplane arrangements’, Preprint, 2017, https://arxiv.org/abs/1709.08213.
4. [67] Paul, S. T. and Tian, G. , ‘CM stability and the generalized Futaki invariant I’, Preprint, 2006, https://arxiv.org/abs/math/0605278.
5. Good moduli spaces for Artin stacks
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献