Immersive virtual-reality computer-assembly serious game to enhance autonomous learning

Author:

Checa David,Miguel-Alonso Ines,Bustillo AndresORCID

Abstract

AbstractImmersive virtual reality (VR) environments create a very strong sense of presence and immersion. Nowadays, especially when student isolation and online autonomous learning is required, such sensations can provide higher satisfaction and learning rates than conventional teaching. However, up until the present, learning outcomes with VR tools have yet to prove their advantageous aspects over conventional teaching. The project presents a VR serious game for teaching concepts associated with computer hardware assembly. These concepts are often included in any undergraduate’s introduction to Computer Science. The learning outcomes are evaluated using a pre-test of previous knowledge, a satisfaction/usability test, and a post-test on knowledge acquisition, structured with questions on different knowledge areas. The results of the VR serious game are compared with another two learning methodologies adapted to online learning: (1) an online conventional lecture; and (2) playing the same serious game on a desktop PC. An extensive sample of students (n = 77) was formed for this purpose. The results showed the strong potential of VR serious games to improve student well-being during spells of confinement, due to higher learning satisfaction. Besides, ease of usability and the use of in-game tutorials are directly related with game-user satisfaction and performance. The main novelty of this research is related to academic performance. Although a very limited effect was noted for learning theoretical knowledge with the VR application in comparison with the other methodologies, this effect was significantly improved through visual knowledge, understanding and making connections between different concepts. It can therefore be concluded that the proposed VR serious game has the potential to increase student learning and therefore student satisfaction, by imparting a deeper understanding of the subject matter to students.

Funder

Consejeria de Empleo of the Junta de Castilla y León

Active and Assisted Living programme

Centre for Industrial Technological Development

Universidad de Burgos

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3