Investigating the Impact of Interactive Immersive Virtual Reality Environments in Enhancing Task Performance in Online Engineering Design Activities

Author:

Bharathi Ajay Karthic B. Gopinath1,Tucker Conrad S.1

Affiliation:

1. Pennsylvania State University, University Park, PA

Abstract

The objective of this paper is to test the hypothesis that immersive virtual reality environments such as those achievable through the head-mounted displays, enhance task performance in online engineering design activities. In this paper, task performance is measured by the time to complete a given engineering activity. Over the last decade, a wide range of virtual reality applications have been developed based on non-immersive and immersive virtual reality systems for educational purposes. However, a major limitation of non-immersive virtual reality systems is the lack of an immersive experience that not only provides content to students, but also enables them to interact and learn in a completely 360 degree immersive environment. The authors of this work have developed a replica of a physical engineering laboratory in an interactive virtual learning environment. This research measures the difference in task performance between i) students exposed to an immersive virtual reality system and ii) students exposed to a non-immersive virtual reality system, in the interactive virtual environment developed by the research team. This research seeks to explore whether statistically significant differences in performance exist between these groups. Knowledge gained from testing this hypothesis will inform educators about the value and impact of immersive virtual reality technologies in enhancing online education. A case study involving 54 students in a product functional analysis task is used to test the hypothesis.

Publisher

American Society of Mechanical Engineers

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3