Dynamic Network Embedding by Modeling Triadic Closure Process

Author:

Zhou Lekui,Yang Yang,Ren Xiang,Wu Fei,Zhuang Yueting

Abstract

Network embedding, which aims to learn the low-dimensional representations of vertices, is an important task and has attracted considerable research efforts recently. In real world, networks, like social network and biological networks, are dynamic and evolving over time. However, almost all the existing network embedding methods focus on static networks while ignore network dynamics. In this paper, we present a novel representation learning approach, DynamicTriad, to preserve both structural information and evolution patterns of a given network. The general idea of our approach is to impose triad, which is a group of three vertices and is one of the basic units of networks. In particular, we model how a closed triad, which consists of three vertices connected with each other, develops from an open triad that has two of three vertices not connected with each other. This triadic closure process is a fundamental mechanism in the formation and evolution of networks, thereby makes our model being able to capture the network dynamics and to learn representation vectors for each vertex at different time steps. Experimental results on three real-world networks demonstrate that, compared with several state-of-the-art techniques, DynamicTriad achieves substantial gains in several application scenarios. For example, our approach can effectively be applied and help to identify telephone frauds in a mobile network, and to predict whether a user will repay her loans or not in a loan network.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distance Enhanced Hypergraph Learning for Dynamic Node Classification;Neural Processing Letters;2024-09-09

2. BP-MoE: Behavior Pattern-aware Mixture-of-Experts for Temporal Graph Representation Learning;Knowledge-Based Systems;2024-09

3. Temporal dynamics unleashed: Elevating variational graph attention;Knowledge-Based Systems;2024-09

4. Topology-aware Embedding Memory for Continual Learning on Expanding Networks;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

5. LLM4DyG: Can Large Language Models Solve Spatial-Temporal Problems on Dynamic Graphs?;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3