Distance Enhanced Hypergraph Learning for Dynamic Node Classification

Author:

Liu Dengfeng,Pan Zhiqiang,Hu Shengze,Cai Fei

Abstract

AbstractDynamic node classification aims to predict the labels of nodes in the dynamic networks. Existing methods primarily utilize the graph neural networks to acquire the node features and original graph structure features. However, these approaches ignore the high-order relationships between nodes and may lead to the over-smoothing issue. To address these issues, we propose a distance enhanced hypergraph learning (DEHL) method for dynamic node classification. Specifically, we first propose a time-adaptive pre-training component to generate the time-aware representations of each node. Then we utilize a dual-channel convolution module to construct the local and global hypergraphs which contain the corresponding local and global high-order relationships. Moreover, we adopt the K-nearest neighbor algorithm to construct the global hypergraph in the embedding space. After that, we adopt the node convolution and hyperedge convolution to aggregate the features of neighbors on the hypergraphs to the target node. Finally, we combine the temporal representations and the distance enhanced representations of the target node to predict its label. In addition, we conduct extensive experiments on two public dynamic graph datasets, i.e., Wikipedia and Reddit. The experimental results show that DEHL outperforms the state-of-the-art baselines in terms of AUC.

Funder

Postgraduate Scientific Research Innovation Project of Hunan Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3