LLM4DyG: Can Large Language Models Solve Spatial-Temporal Problems on Dynamic Graphs?

Author:

Zhang Zeyang1ORCID,Wang Xin2ORCID,Zhang Ziwei1ORCID,Li Haoyang1ORCID,Qin Yijian1ORCID,Zhu Wenwu2ORCID

Affiliation:

1. DCST, Tsinghua University, Beijing, China

2. DCST, BNRist, Tsinghua University, Beijing, China

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Beijing National Research Center for Information Science and Technology under Grant

Beijing Key Lab of Networked Multimedia

Publisher

ACM

Reference95 articles.

1. Flamingo: a visual language model for few-shot learning;Alayrac Jean-Baptiste;Advances in Neural Information Processing Systems,2022

2. Jinze Bai Shuai Bai Yunfei Chu Zeyu Cui Kai Dang Xiaodong Deng Yang Fan Wenbin Ge Yu Han Fei Huang et al. 2023. Qwen technical report. arXiv preprint arXiv:2309.16609 (2023).

3. Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence, Vol. 35, 8 (2013), 1798--1828.

4. Graph of Thoughts: Solving Elaborate Problems with Large Language Models

5. Tom Brown Benjamin Mann Nick Ryder Melanie Subbiah Jared D Kaplan Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan Rewon Child Aditya Ramesh Daniel Ziegler Jeffrey Wu Clemens Winter Chris Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray Benjamin Chess Jack Clark Christopher Berner Sam McCandlish Alec Radford Ilya Sutskever and Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems. 1877--1901.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph Intelligence with Large Language Models and Prompt Learning;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Large Language Model with Curriculum Reasoning for Visual Concept Recognition;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Advances in neural architecture search;National Science Review;2024-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3