Improving Domain-Independent Planning via Critical Section Macro-Operators

Author:

Chrpa Lukáš,Vallati Mauro

Abstract

Macro-operators, macros for short, are a well-known technique for enhancing performance of planning engines by providing “short-cuts” in the state space. Existing macro learning systems usually generate macros from most frequent sequences of actions in training plans. Such approach priorities frequently used sequences of actions over meaningful activities to be performed for solving planning tasks. This paper presents a technique that, inspired by resource locking in critical sections in parallel computing, learns macros capturing activities in which a limited resource (e.g., a robotic hand) is used. In particular, such macros capture the whole activity in which the resource is “locked” (e.g., the robotic hand is holding an object) and thus “bridge” states in which the resource is locked and cannot be used. We also introduce an “aggressive” variant of our technique that removes original operators superseded by macros from the domain model. Usefulness of macros is evaluated on several stateof-the-art planners, and a wide range of benchmarks from the learning tracks of the 2008 and 2011 editions of the International Planning Competition.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving Applicability of Planning in the RoboCup Logistics League Using Macro-actions Refinement;Lecture Notes in Computer Science;2024

2. Reformulation techniques for automated planning: a systematic review;The Knowledge Engineering Review;2023

3. Enhancing Temporal Planning by Sequential Macro-Actions;Logics in Artificial Intelligence;2023

4. Improving Domain-Independent Heuristic State-Space Planning via plan cost predictions;Journal of Experimental & Theoretical Artificial Intelligence;2021-10-31

5. Modeling Planning Tasks: Representation Matters;Knowledge Engineering Tools and Techniques for AI Planning;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3