Reformulation techniques for automated planning: a systematic review

Author:

Alarnaouti Diaeddin,Baryannis GeorgeORCID,Vallati MauroORCID

Abstract

Abstract Automated planning is a prominent area of Artificial Intelligence and an important component for intelligent autonomous agents. A cornerstone of domain-independent planning is the separation between planning logic, that is the automated reasoning side, and the knowledge model, that encodes a formal representation of domain knowledge needed to reason upon a given problem to synthesize a solution plan. Such a separation enables the use of reformulation techniques, which transform how a model is represented in order to improve the efficiency of plan generation. Over the past decades, significant research effort has been devoted to the design of reformulation techniques. In this paper, we present a systematic review of the large body of work on reformulation techniques for classical planning, aiming to provide a holistic view of the field and to foster future research in the area. As a tangible outcome, we provide a qualitative comparison of the existing classes of techniques, that can help researchers gain an overview of their strengths and weaknesses.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Reference87 articles.

1. Armano, G. , Cherchi, G. & Vargiu, E. 2004. Automatic generation of macro-operators from static domain analysis. In Proceedings of the 16th European Conference on Artificial Intelligence, 955–956.

2. On the Relevance of Extracting Macro-operators with Non-adjacent Actions: Does It Matter?

3. Younes, H. L. & Littman, M. L. 2004. PPDDL1.0: an extension to PDDL for expressing planning domains with probabilistic effects. Technical Report CMU-CS-04-162, 2, 99.

4. On the Importance of Domain Model Configuration for Automated Planning Engines

5. Outer entanglements: a general heuristic technique for improving the efficiency of planning algorithms

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3