Joint Representation Learning for Multi-Modal Transportation Recommendation

Author:

Liu Hao,Li Ting,Hu Renjun,Fu Yanjie,Gu Jingjing,Xiong Hui

Abstract

Multi-modal transportation recommendation has a goal of recommending a travel plan which considers various transportation modes, such as walking, cycling, automobile, and public transit, and how to connect among these modes. The successful development of multi-modal transportation recommendation systems can help to satisfy the diversified needs of travelers and improve the efficiency of transport networks. However, existing transport recommender systems mainly focus on unimodal transport planning. To this end, in this paper, we propose a joint representation learning framework for multi-modal transportation recommendation based on a carefully-constructed multi-modal transportation graph. Specifically, we first extract a multi-modal transportation graph from large-scale map query data to describe the concurrency of users, Origin-Destination (OD) pairs, and transport modes. Then, we provide effective solutions for the optimization problem and develop an anchor embedding for transport modes to initialize the embeddings of transport modes. Moreover, we infer user relevance and OD pair relevance, and incorporate them to regularize the representation learning. Finally, we exploit the learned representations for online multimodal transportation recommendations. Indeed, our method has been deployed into one of the largest navigation Apps to serve hundreds of millions of users, and extensive experimental results with real-world map query data demonstrate the enhanced performance of the proposed method for multimodal transportation recommendations.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3