DeepSneak: User GPS Trajectory Reconstruction from Federated Route Recommendation Models

Author:

Ariyarathna Thirasara1ORCID,Mohommady Meisam2ORCID,Paik Hye-young1ORCID,Kanhere Salil S.1ORCID

Affiliation:

1. University of New South Wales, Australia

2. Iowa State University, USA

Abstract

Decentralized machine learning, such as Federated Learning (FL), is widely adopted in many application domains. Especially in domains like recommendation systems, sharing gradients instead of private data has recently caught the research community’s attention. Personalized travel route recommendation utilizes users’ location data to recommend optimal travel routes. Location data is extremely privacy sensitive, presenting increased risks of exposing behavioural patterns and demographic attributes. FL for route recommendation can mitigate the sharing of location data. However, this paper shows that an adversary can recover the user trajectories used to train the federated recommendation models with high proximity accuracy. To this effect, we propose a novel attack called DeepSneak, which uses shared gradients obtained from global model training in FL to reconstruct private user trajectories. We formulate the attack as a regression problem and train a generative model by minimizing the distance between gradients. We validate the success of DeepSneak on two real-world trajectory datasets. The results show that we can recover the location trajectories of users with reasonable spatial and semantic accuracy.

Publisher

Association for Computing Machinery (ACM)

Reference45 articles.

1. Deep Learning with Differential Privacy

2. Report from Dagstuhl

3. Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein generative adversarial networks. In International conference on machine learning. PMLR, 214–223.

4. Dawei Chen, Cheng Soon Ong, and Lexing Xie. 2016. Learning Points and Routes to Recommend Trajectories. CoRR abs/1608.07051 (2016). arXiv:1608.07051 http://arxiv.org/abs/1608.07051

5. Discovering popular routes from trajectories

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3